
Definition 1. A matrix Lie group is a group of matrices that is

closed under nonsingular limits. That is, if 𝐴1, 𝐴2, … is a

convergent sequence of matrices in 𝐺 , with limit 𝐴, and if

det(𝐴) ≠ 0, then 𝐴 ∈ 𝐺.
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Introduction
The theory of Lie groups is a fundamental tool in theoretical

physics which appears whenever a system has a continuous

symmetry. We give a review of some fundamental theorems in

matrix Lie groups and Lie algebras and the relationship between

them.

Basic concepts
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Exponential and Logarithm Maps

Lifting a Lie Algebra Homomorphism

Campbell-Baker-Hausdorff Theorem

𝑖 𝑒𝑖𝜃 𝑖𝜃

𝑂 𝟏
𝑥

𝑦

What fascinates us about Lie theory is that a Lie group 𝐺 can be
almost completely captured by the flat tangent space 𝑇𝟏 𝐺 of 𝐺
at the identity. 𝑇𝟏 𝐺 consists of the velocity vectors of all
smooth paths through 𝟏.

Definition 2. A matrix Lie algebra is a vector space of matrices

that is closed under the Lie bracket 𝑉, 𝑊 = 𝑉𝑊 − 𝑊𝑉.

Exponentiation of tangent vectors. If 𝐴′ 0 is the tangent vector

at 𝟏 to a matrix Lie group 𝐺, then 𝑒𝐴′(0) ∈ 𝐺. That is, exp maps

the tangent space 𝑇𝟏(𝐺) into 𝐺.

The log of a neighbourhood of 1. For any matrix Lie group 𝐺

there is a neighbourhood 𝑁𝛿 𝟏 mapped into 𝑇𝟏(𝐺) by log.

Corollary 1. The log function gives a bijection, continuous in

both direction, between 𝑁𝛿(𝟏) in 𝐺 and log 𝑁𝛿(𝟏) in 𝑇𝟏(𝐺).

The 𝑍 such that 𝑒𝑋𝑒𝑌 = 𝑒𝑍 for possibly noncommutative 𝑋 and 𝑌
in the Lie algebra of a Lie group is the sum of a series 𝑋 + 𝑌 + Lie

bracket terms composed from 𝑋 and 𝑌. In this sense, the Lie bracket 
on 𝔤 “determines” the product operation on 𝐺.

If 𝔤 and 𝔥 are the Lie algebras of simply connected Lie groups 𝐺
and 𝐻, respectively, then each Lie algebra homomorphism 𝜑: 𝔤 → 𝔥
is induced by a Lie group homomorphism Φ: 𝐺 → 𝐻.
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Corollary 2. If 𝐺 and 𝐻 are simply connected Lie groups with

isomorphic Lie algebras 𝔤 and 𝔥, respectively, then 𝐺 is isomorphic

to 𝐻.

Classical groups and their Lie algebras
𝐺 𝑂(𝑛; ℝ) 𝑆𝑂(𝑛; ℝ) 𝑈(𝑛) 𝑆𝑈(𝑛) 𝑆𝑝(𝑛)

𝔤 𝑋 + 𝑋𝑇 = 0 𝑋 + 𝑋𝑇 = 0 𝑋 + 𝑋† = 0
𝑋 + 𝑋† = 0

tr 𝑋 = 0
𝑋 + 𝐽−1𝑋†𝐽 = 0

𝑋 + 𝑋† = 0

dim 𝐺
𝑛(𝑛 − 1)

2

𝑛(𝑛 − 1)

2
𝑛2 𝑛2 − 1 𝑛(2𝑛 + 1)

Uniform continuity of path deformation
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If 𝑑 is a deformation of path 𝑝 to path 𝑞 and 𝑑𝑖𝑗 runs through sequence of

maps that deform the bottom edge of the unit square to the top, then the
sequence of composite maps 𝑑 ∘ 𝑑𝑖𝑗 deforms 𝑝 to 𝑞, and each 𝑑 ∘ 𝑑𝑖𝑗 agrees

with 𝑑 outside a neighbourhood of the image of the (𝑖, 𝑗)-subsquare, and
hence outside an 𝜀-ball. In this sense, if a path 𝑝 can be deformed to a path 𝑞,
then 𝑝 can be deformed to 𝑞 in a finite sequence of “small” steps.
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𝕊1 and its tangent at the identity.

𝛾(𝑡)

𝛾 0 = 𝟏

𝐺

Sophus Lie (1842-1899)

In a broader sense, a Lie group is a group that is 
also a differentiable manifold.
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The tangent space of 𝐺,
together with its vector

space structure and Lie

bracket operation, is

called the Lie algebra of

𝐺, denoted by 𝔤.

Theorem. The dimension of 𝔤
is finite and it is equal to
dim 𝑇𝟏 𝐺 = dim 𝐺.


